Table of Contents

Overview ... 3
MCD1160 – Introductory Engineering Computing ... 4
MCD1170 – Introductory Chemistry .. 5
MCD1180 – Introductory Physics ... 6
MCD1190 – Chemistry A .. 7
MCD1200 – Physics A .. 8
MCD1470 – Engineering Practices .. 9
MCD1700 – Introductory Mathematics ... 10
MCD1750 – Intermediate Mathematics .. 12
MCD2040 – Managing People and Organisations ... 13
MCD2080 – Business Statistics .. 14
MCD2130 – Functions and Their Applications ... 15
MCD4140 – Computing for Engineers .. 16
MCD4160 – Physics for Engineering ... 17
MCD4390 – Chemistry I .. 18
MCD4400 – Chemistry II .. 19
MCD4410 – Biology I .. 20
MCD4420 – Biology II ... 21
MCD4490 – Advanced Mathematics ... 22
MCD4500 – Engineering Mathematics .. 23
MCD4700 – Introduction to Computer Systems, Networks and Security ... 24
MCD6080 – Psychology 1A ... 25
MCD6110 – Psychology 1B .. 26
MCD8010 – Understanding Learning and Learners .. 27
MCD8020 – Understanding Teaching for Learning ... 28
MCD8030 – Primary Professional Experience 1A .. 29
MCD8050 – Primary Professional Experience 1B .. 30
Overview

DIPLOMA PART I

<table>
<thead>
<tr>
<th>Unit Code</th>
<th>Unit Name</th>
<th>Unit EFTSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCD1160</td>
<td>Introductory Engineering Computing</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD1170</td>
<td>Introductory Chemistry</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD1180</td>
<td>Introductory Physics</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD1190</td>
<td>Chemistry A</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD1200</td>
<td>Physics A</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD1470</td>
<td>Engineering Practice</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD1700</td>
<td>Introductory Mathematics</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD1750</td>
<td>Intermediate Mathematics</td>
<td>0.125</td>
</tr>
</tbody>
</table>

DIPLOMA PART II

<table>
<thead>
<tr>
<th>Unit Code</th>
<th>Unit Name</th>
<th>Unit EFTSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCD4390</td>
<td>Chemistry I</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD4400</td>
<td>Chemistry II</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD4410</td>
<td>Biology I</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD4420</td>
<td>Biology II</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD8010</td>
<td>Understanding Learning and Learners</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD8020</td>
<td>Understanding Teaching for Learning</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD8080</td>
<td>Business Statistics</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD8030</td>
<td>Primary Professional Experience Placement 1A (5 days)</td>
<td>-</td>
</tr>
<tr>
<td>MCD8050</td>
<td>Primary Professional Experience Placement 1B (5 days)</td>
<td>-</td>
</tr>
</tbody>
</table>

Plus 1 Elective from:
- MCD2130 Functions and Their Applications
- MCD4500 Engineering Mathematics
- MCD4160 Physics for Engineering
- MCD6080 Psychology 1A
- MCD6110 Psychology 1B
Purpose
This unit will provide grounding in the basic functioning of a computer system and how it is used within the engineering environment. Students' knowledge of the following will be extended: advanced Microsoft Word features, Excel, and PowerPoint. Further, students will learn how to solve real-world problems via the utilisation of a microcontroller and programming language, students will create and execute an effective oral presentation to share their findings.

It is expected that students will investigate, explore and discuss engineering concepts and issues and solve problems in class using computers.

Prerequisite
Nil

Learning Outcomes
On completion of this unit, students should be able to:
1. Use the formatting features of a word processor.
2. Use utilities and advanced features provided with a word processor.
3. Create and format a spreadsheet.
4. Use functions and formulas to perform calculations in a spreadsheet.
5. Use graphics in a spreadsheet.
6. Use advanced facilities of a spreadsheet
7. Designing Power point Slides, incorporating text, graphics and sound, and presentation of information, including the use of bullet points.
8. Designing slide shows, animation of a slide, slide transitions, use of templates & the auto content wizard.
9. Communicate technical content in effective oral presentations.
10. Implement problem solving strategies.
11. Decompose problems into simpler problems.
12. Construct and test simple computer programs.
13. Analyse and debug existing programs.
14. Recognise the importance of good practices in programming.
15. Understand how real-word problems can be addressed by the digital-word.

Assessments
- Test 1 - 10%
- Test 2 - 10%
- Assignment 1 - 20%
- Presentation 1 - 5%
- Assignment 2 - 30%
- Presentation 2 - 5%
- Lab Participation - 10%
- Weekly Quizzes - 10%
- No Final Examination
MCD1170 – Introductory Chemistry

Purpose
This unit introduces and reinforces the fundamentals of chemistry by exploring physical and organic chemistry using a variety of theoretical and practical techniques.

Prerequisites
Students should have completed an equivalent to Victorian VCE Year 11 Chemistry, Units 1 & 2

Learning Outcomes
On completion of this unit, students should be able to:
1. Express chemical reactions symbolically, qualitatively and quantitatively.
2. Write rate laws and explain how the position of equilibrium can be altered, including examples from industry.
3. Explain the structure and naming of simple organic molecules.
4. Explain the concepts of bonding between atoms and relate this to the properties of compounds.

Assessments
- Test 1 - 10%
- Test 2 - 10%
- Quizzes (1 – 10) - 10%
- Poster / Presentation - 10%
- Final examination - 60%
Purpose
Physics seeks to describe the fundamental nature of the universe and strives to reveal nature's underlying simplicity and establish the rules which cause galaxies to form, the toast to burn, or what holds the component parts of a proton together. Physics underlies all the life and physical sciences, as well as Engineering and Technology. So this module considers the basic concepts of mechanics, energy, waves and optics. However, physics is not just theories. It relies heavily on mathematics and numerical measurements to test the theories – an aspect students will meet through practical work.

Prerequisites
Nil

Learning Outcomes
On completion of this unit, students should be able to:
1. Describe the difference between qualitative and quantitative techniques; record accurate observations.
2. Select measuring equipment of appropriate accuracy.
3. Utilise appropriate numbers of significant figures.
4. Recognise the measurement error in selected equipment; identify sources of error in analytical procedures.
5. Distinguish between displacement, speed, velocity and acceleration.
6. Distinguish between scalar and vector quantities.
7. Apply the laws of motion to practical situations.
8. Demonstrate knowledge of mass, force and their relationship through Newton's laws.
9. Differentiate between work, energy, kinetic energy, potential energy and power.
10. Differentiate between force and torque and apply the laws of equilibrium to practical situations.
11. Distinguish between displacement, amplitude, period, frequency and wavelength of a wave.
12. Describe behavior of waves in terms of reflection, refraction, diffraction and interference.
13. Distinguish between energy, intensity and intensity level in a wave.
14. Discuss Young's double slit experiment in terms of light being a wave.
15. Apply ray model of light to plane mirrors, refraction at boundary and to thin lenses.

Assessments
- Test 1 - 4%
- Quizzes - 6%
- Test 2 - 8%
- Laboratory - 22%
- Final Exam - 60%
MCD1190 – Chemistry A

Purpose
Chemistry is the study of matter, its transformations, and the energy changes that accompany those transformations. Chemistry is an important branch of science with applications in a number of areas (Applied sciences, Biochemistry, Engineering, Environmental chemistry, Material chemistry, Earth and space sciences). For example, knowledge of chemical concepts will assist us to explore new and cheaper energy sources, improve health and safety standards, and develop ‘greener’ and environmentally friendly processes, which reduce pollution and wastage in the environment.

This unit is designed to build on the students’ base knowledge of chemistry by further exploration of:
1. Energy
2. Chemical Kinetics
3. Food Chemistry
4. Atomic Theory and the Periodic Table
5. Nuclear Chemistry

It is expected that students will investigate, explore and discuss chemical concepts and issues, and solve quantitative and qualitative problems in class.

Prerequisites
MCD1170 Introductory Chemistry or VCE Year 11 Chemistry, Unit 3

Learning Outcomes
On completion of this unit, students should be able to:
1. Demonstrate the importance of energy transformations in thermochemical and electrochemical reactions.
2. Define reaction rate and find rate laws from initial rates and integrated rate laws.
3. Relate organic chemical structures to observed chemical reactions, using examples from those involved in human nutrition and global cycling of nutrients.
4. Analyse the arrangement of elements in the periodic table (including its historical development) and relate trends in properties of elements to their atomic structure.
5. Explore the nature of nuclear reactions, radioactivity, nuclear stability and rates of disintegration reactions.

Assessments
- Test 1 8%
- Test 2 10%
- Quizzes (1-6) 12%
- Poster 10%
- Final Examination 60%
MCD1200 – Physics A

Purpose
Physics seeks to describe the fundamental nature of the universe and strives to reveal nature's underlying simplicity. This module continues on from Introductory Physics, and considers the basic concepts of practical investigation, rotational motion, electricity and magnetism, and atomic theories.

It must be remembered that physics is not just theories. It relies heavily on mathematics and numerical measurements to test certain theories – an aspect students will meet through the practical work.

Prerequisites
MCD1180 Introductory Physics

Learning Outcomes
On completion of this unit, students should be able to:
1. Demonstrate knowledge of the value of practical work.
2. Apply the theory of rotational motion.
3. Solve problems involving electricity and magnetism.
4. Explain a range of atomic theories.

Assessments
- Test 1 - 4%
- Quizzes (1-6) - 6%
- Test 2 - 8%
- Laboratory - 22%
- Final Exam - 60%
MCD1470 – Engineering Practices

Purpose
This unit is designed to extend the students' base knowledge into the following areas:

- Professions
- Design and Analysis
- Communication
- Ethics
- Economics

It is expected students will investigate, explore and discuss engineering concepts and issues, and solve quantitative and qualitative problems in class.

Prerequisites
Nil

Learning Outcomes
On completion of this unit, students should be able to:

1. Gain a foundation of engineering principles and integrate these principles with chemistry, physics, mathematics, economics and design principles.
2. Develop conceptual understanding and problem-solving abilities by applying engineering principles.
3. Develop proficiency with technologies for analysis, simulation, theoretical prediction, access to information, and report preparation.
4. Describe the importance and relevance of engineering and its interdisciplinary ties to other fields and society, in order to become a scientifically literate and ethical citizen.
5. Demonstrate proper and ethical scientific and engineering practices, including safety, environment, and record keeping.
6. Interpret scientific and engineering results and draw reasonable conclusions.
7. Communicate effectively through written and oral reports.

Assessments
- Assignment 1 - 15%
- Assignment 2 (Test 1) - 10%
- Assignment 3 - 10%
- Assignment 4 (Test 2) - 10%
- Assignment 5 (Test 3) - 10%
- Final Design Project - 45%
Purpose
This is a core unit in the Monash College Diploma Part 1 of Engineering, Information Technology and Science. The unit will provide students with the pre-requisite knowledge and skills to progress to the higher levels of mathematics in the Engineering IT and Science diploma; subsequently in the relevant degree programs.

Prerequisites
Nil

Learning Outcomes
On completion of this unit, students should be able to:

1. Identify number sets in complex domain.
2. Use set notation to describe numbers.
3. Use interval notations to represent number sets.
4. Use real number line to express the number sets.
5. Use Venn diagram to represent number sets.
6. Solve linear and simultaneous linear equations using graphical and algebraic methods.
7. Use simultaneous linear equations to model and solve real world problems.
8. Recognise prime, rational, irrational and complex numbers.
9. Apply factor theorem to factorise polynomial functions.
10. Solve polynomial equations.
11. Solve quadratic equations using factorizing, quadratic formula or completing the square method.
12. Sketch graphs of quadratic functions.
13. Apply binomial expansion to solve problem in various algebraic contexts.
15. Plot complex numbers in the Argand diagram.
16. Find the rule for inverse function for given functions and sketch the graph of inverse functions.
17. Solve system of equations and literal equations.
18. Use exponential and logarithmic functions to model application problems.
19. Sketch graphs of exponential and logarithmic functions.
20. Solve exponential and logarithmic equations.
21. Convert radians in to degrees and vice versa.
22. Apply trigonometric ratios of $0^\circ, 30^\circ, 45^\circ, 60^\circ, 90^\circ$ to solve problem in various geometric and analytical geometric contexts.
23. Apply sine and cosine rule solve to solve problem in various geometric and analytical geometric contexts.
24. Sketch the graphs of trigonometric functions of \(\sin, \cos, \tan, \sec, \cosec \) and \(\cot \).
25. Identify amplitude, period and mid line of \(a \sin(bx + c) + d \) and \(a \cos(bx + c) + d \).
27. Apply vector algebra to solve problems in geometry.
28. Express vectors using \(\hat{i} \) and \(\hat{j} \) components. In \(\mathbb{R}^2 \).
29. Express Cartesian coordinates in \(\mathbb{R}^2 \).
30. Calculate distance between two points in \(\mathbb{R}^2 \).
31. Use the formula \(\left(\frac{n+m}{n+1}, \frac{m+m}{m+1} \right) \) to divide a line segment by a given ratio.
32. Solve problems related to parallel and perpendicular lines in \(\mathbb{R}^2 \).
33. Recognise angles relating in parallel lines, triangles and polygons.
34. Identify congruent and similar triangles.
35. Apply properties of congruent and similar triangles to solve problems in plane geometry and analytical geometry.
36. Recognise rectangle, rhombus, parallelogram and square from complex geometrical diagrams. Apply properties of rectangle, rhombus, parallelogram and square to solve problems in plane geometry and analytical geometry.

Assessments
- Topic Quizzes - 10%
- Test - 20%
- Assignment - 5%
- Tutorial participation - 5%
- Final Examination - 60%
MCD1750 – Intermediate Mathematics

Purpose
This is a core unit in the Monash College Diploma Part 1 of Engineering, Information Technology and Science. The unit will provide students with the pre-requisite knowledge and skills to progress to the higher levels of mathematics in the Engineering IT and Science diploma; subsequently in the relevant degree programs.

Prerequisites
MCD1700

Learning Outcomes
On completion of this unit, students should be able to:

1. Apply the concept of vectors in Cartesian form in analytical geometry.
2. Find and apply position vector, magnitude of vector, unit vector, angles between vectors and direction cosines in two and three-dimensional problems.
3. Describe linear dependency and independency in vectors.
4. Find scalar and vector resolute, scalar product of vectors, application of scalar product.
5. Use Pythagorean identities \(\sin^2 \theta + \cos^2 \theta = 1; \tan^2 \theta + 1 = \sec^2 \theta; 1 + \cot^2 \theta = \csc^2 \theta \) in problem solving.
6. Apply compound-angle identities in various geometric and analytical geometric applications.
7. Find general solutions of simple and complicated trigonometric equations.
8. Apply limits, continuity and differentiation to solve mathematical problems.
9. Identify and analyse the nature of critical point using derivative tests.
10. Apply the differentiation to solve the problems in various context of engineering and other disciplines.
11. Extend the concept of derivatives by inverse circular functions.

Assessments
- Topic Quiz 10%
- Test 20%
- Assignment 5%
- Tutorial participation 5%
- Final examination – 60%
MCD2040 – Managing People and Organisations

Purpose
This unit aims to develop knowledge, understanding, skills and abilities in management studies through engaging in future focused and real world content. It is a critical course to develop understanding for students who may one day become managers in various disciplines including Business, Education, Engineering, Science and IT.

Prerequisites
Nil

Learning outcomes
On completion of this unit, students should be able to:

1. Demonstrate a contextual appreciation of management as an evolving set of contested ideas for how managers may influence people, organisations, and their environments to achieve organizational goals.

2. Identify what managers do in practice, and analyse how the various activities that compromise managing both shape and are shaped by individual and group behavior and diversity in organizational settings.

3. Critically evaluate the impact of contemporary management practices on employee experiences of being managed.

4. Explain the concepts of stakeholder interests and socially responsible management, assessing their implications for individuals and organisations in a global context.

5. Apply research, analytical and communication skills required of the management discipline to address business challenges.

Assessment
- Pre-tutorial assessments - 10%
- Tutorial test – 10%
- Reciprocal Teaching Practices (RTP) – 10%
- Business Report Assignment – 30%
- Final Examination – 40%
MCD2080 – Business Statistics

Purpose
This unit aims to enable students to perform basic analysis of raw data and present their findings. Students will also learn to critically evaluate data analysis presented to them.

Prerequisites
MCD1110 Data Analysis and MCD1550 Introduction Mathematics for Business or equivalent (For Business stream only. For Part 2 students, Part 1 pre-requisites are not applicable).
MCD1110 Data Analysis and MCD1230 Applied Mathematics or equivalent (For Commerce stream only. For Part 2 students, Part 1 pre-requisites are not applicable).

Learning outcomes
On completion of this unit, students should be able to:
1. Interpret business data using descriptive statistics techniques, including the use of Excel spreadsheet functions.
2. Apply simple concepts of probability and probability distributions to problems in business decision-making.
3. Describe the role of statistical inference and apply inference methods to single population means and proportions.
4. Interpret and evaluate relationships between variables for business decision-making using the concepts of correlation and simple linear regression.
5. Apply the chi-square test of independence to test whether there is relationship between two categorical variables.
6. Interpret time series components and apply suitable time series techniques of forecasting to business and financial series and interpreting the results.

Assessments
- Mid-trimester test – 10%
- Lecture activities – 10%
- Tutorial Engagement and participation – 20%
- Final Examination – 60%
MCD2130 – Functions and Their Applications

Purpose

The focus of this unit will be on the behavior of functions and examining some of their applications to the real world. The way that functions will be introduced is by individually describing the characteristics of families of different function types (linear, polynomial, rational, exponential, logarithmic and trigonometric). The composition of functions through possible combination of different types of component functions will also be investigated. Other operations on functions such as transformations via shifting, scaling and reflection will be presented, along with the existence and meaning of inverse functions. This initial part of the course will then be used to provide a foundation for examining the rate of change of a function. Principally this involves defining the elementary principles of differential calculus and then utilising these with respect to the types of functions mentioned above. As a final topic an introduction to integral calculus is presented.

Prerequisites

It is recommended that students have studied Year 11 (or equivalent) Mathematics.

Learning outcomes

On completion of this subject, students will have acquired knowledge of:

1. The notions of function and their representation as tables, graphs or mathematical expressions.
2. Basic characteristics of linear, polynomial, rational, exponential, logarithmic and trigonometric functions.
3. The algebra of functions.
4. Methods of transformations of a function and finding inverse functions.
5. The notion of rate of change of a function and finding derivatives of functions.

And will have developed skills in:

1. Identifying different types of functions behavior by means of neat sketch-graphs; determining basic properties and behavior of functions by analytic and by means of neat sketch graphs.
2. Using function algebra.
3. Calculating composition functions and inverse functions; using functions as models of real-life behavior; calculating simple derivatives and integrals; communicating and interpreting mathematical results.

Assessment

- Diagnostic online assessment quizzes – 10%
- Tutorial participation – 10%
- Mini test 1 – 5%
- Assignment 1 – 5%
- Mini test 2 – 5%
- Assignment 2 – 5%
- Final Examination – 60%
MCD4140 – Computing for Engineers

Purpose
This unit introduces software development and design using MATLAB, including data types and variables, structured programming, M-files and functions, numerical errors and uncertainty and the programming of numerical techniques. Numerical techniques covered include root finding, interpolation, linear and non-linear regression, numerical integration and ordinary differential equations.

Prerequisites
Nil

Co-requisites
MCD4500 Mathematics for Engineering

Learning Outcomes
On completion of this unit, students should be able to:

1. Develop an understanding of commonly used numerical methods for solving engineering problems; the ability to appropriately apply numerical methods to engineering problems and to know some of the limitations of such methods.

2. Develop structured problem solving techniques and to develop a knowledge of programming concepts and the ability to write simple programs.

Assessments

- Lecture Quizzes and Computer Labs – 30%
- Assignment – 10%
- Final Examination – 60%
MCD4160 – Physics for Engineering

Purpose
This unit relates key principles of physics to engineering and technology, and shows how physics, including quantum and nano-science, creates useful new technologies. Energy, momentum and angular momentum: planetary orbits, rocket propulsion, precession, fly wheels. Oscillations and waves: resonance, transmission of energy; Doppler effect and speed measurement, polarization and stress models, diffraction and nano-structures, thin film interference and antireflecting film. Quantum Physics: Uncertainty Principle, wave functions, lasers, stimulated emission; synchrotron radiation, atomic force microscope. The practical component develops measurement, analysis, and communication skills.

Prerequisites
MCD1200 Physics A (For Part 2 entry students, Part 1 pre-requisites are not applicable).

Learning Outcomes
On completion of this unit, students should be able to:
1. Apply energy and momentum methods to analyse motion of systems.
2. Explain behaviours involving oscillations and waves and do appropriate analysis and calculations.
3. Explain, and apply basic quantum principles to, situations which are relevant in engineering and technology contexts; do appropriate analysis and calculations.
4. Demonstrate an ability to describe and explain advanced techniques used in relevant engineering or physics contexts.
5. Make reliable measurements, estimate uncertainties, analyse, evaluate and interpret data in cases appropriate to engineering and related to the theory studied.
6. Show an improved ability to work in teams and to communicate and discuss physics concepts, measurements and applications related to engineering and developments in technologies.
7. Approach new problems and find solutions on the basis of general principles, and evaluate the appropriateness of their proposed models or solutions.

Assessment
- Quizzes / Assignment – 10%
- Test 1 (Mechanics) – 14%
- Test 2 (Oscillation and Waves) – 14%
- Laboratory Work – 22%
- Final Examination – 40%
MCD4390 – Chemistry I

Purpose

The purpose of this unit is to provide students with knowledge and skills in the following areas:

Atoms and Atomic Structure & Periodicity; Polyatomic Molecules: Shapes; Molecular Orbital Theory; the ideal & real gas equations, and intermolecular bonding; Thermodynamics; Equilibria and Reaction Kinetics.

Practical exercises are illustrative of the theory component and provide experience in laboratory techniques and laboratory OHSE practices. Student needs to have a basic knowledge of chemistry (VCE level) or required knowledge equivalent to Monash College unit MCD1170: Introductory Chemistry.

Prerequisites

Nil

Learning Outcomes

On completion of this unit, students should be able to:

1. Discuss the features of atomic structure and the construction of the periodic table of elements.
2. Interpret relationships between electronic structure and bonding.
3. Explore a wide range of molecular structures and investigate aspects of stereochemistry such as isomerism and chirality.
4. Distinguish between ideal gases and real gases.
5. Recognise factors which give rise to polarity and its relationship to intermolecular bonding.
6. Define the first and second laws of thermodynamics and apply enthalpy and entropy.
7. Discuss factors which give rise to chemical kinetics.
8. Apply acid-base chemistry in the understanding of dynamic equilibria.
9. Foster the acquisition of practical skills by exploiting an inquiry-based approach to the chemistry laboratory experience.
10. Communicate chemistry, discuss the social and environmental responsibility of chemists in the global community.

Assessment

- Tutorial participation – 10%
- Laboratory component – 30%
- Online assessment – 10%
- Final examination – 50%
MCD4400 – Chemistry II

Purpose
This unit is designed for students to further exploit their understanding of chemistry by exploring the behavior of chemicals in a number of interesting case studies. These studies will incorporate a range of significant biological and synthetic molecules such as carbohydrates, proteins, polymers and pharmaceutically important drugs, as well as an investigation into inorganic coordination compounds and their role in color, magnetism and biological systems.

Prerequisites
MCD4390 (Chemistry I)

Objectives
On completion of this unit, students should be able to:
1. Demonstrate a basic understanding of chemical nomenclature.
2. Describe the classification, bonding, structure, properties and reactions of a wide range of organic compounds according to the functional groups they contain.
3. Describe the nature of biological and synthetic macromolecules such as proteins, carbohydrates and polymers.
4. Discuss the properties of transition elements.
5. Describe a wide range of coordination compounds and their structures, reactions and applications in both synthetic materials and biological materials.
6. Describe how spectroscopy can be used to investigate molecular structure.
7. Foster practical skills by exploiting an inquiry-based approach to the chemistry laboratory experience.
8. Communicate chemistry, discuss the social and environmental responsibility of chemists in the global community.

Assessment
- Lab component (Prelabs/Reports) – 30%
- Online assessment – 10%
- Tutorial attendance, participation & assessment – 10%
- Final exam – 50%
Purpose
This unit provides a thorough introduction to biological processes from the level of cell biochemistry to that of whole organisms. The structure and function of plant and animal cells in terms of energy fixation, storage and usage are also examined. The unit introduces the diversity of plants and animals and the ecological and evolutionary processes that shape them. This unit also includes the study of microbial, animal and plant biology, comparing and contrasting similarities and differences among these major groups of organisms.

Prerequisites
Nil

Objectives
On completion of this unit, students should be able to:

1. Recognise and understand biological concepts and processes including cell biology and biochemistry, genetics, diversity evolution and ecology.
2. Display competence and precision in the use of laboratory equipment including pipettes, spectrophotometers and microscopes.
3. Formulate hypotheses, make predictions and carry out scientific experiments to test such.
4. Collect experimental data, evaluate it and present it in meaningful ways using appropriate software.
5. Communicate scientific principles and information underlying biology-related topics in written formats and suing appropriate conventions for scientific attribution.
6. Perform library catalogue and database searches to locate and synthesize appropriate information for practical reports.

Assessment
- Practical, online activities and assessments – 50%
- Theory examination – 50%
Unit Guide

Diploma of Science (Education)

MCD4420 – Biology II

Purpose

This unit aims to allow students to gain an understanding of the key methods of biology, concepts and processes related to molecular genetics, animal physiology and of microbial diversity.

Prerequisites

MCD4410 (Biology I)

Objectives

On completion of this unit, students should be able to:

1. Demonstrate a coherent understanding of biology by articulating the methods of biology and explaining why current biological knowledge is both contestable and testable through further inquiry.
2. Demonstrate an understanding of concepts and processes related to molecular genetics, genetic engineering, and the physiology of organ systems, including homeostasis, nervous and muscular-skeletal systems, animal reproduction and development and nutrition.
3. Demonstrate an understanding of microbial diversity, in particular how it relates to human health and disease.
4. Gather, synthesise and critically evaluate information relevant to biology by applying practical techniques (including Gram staining, gel electrophoresis, and spectrophotometry) and tools to conduct investigation within the laboratory.
5. Demonstrate competency in designing experiments, gathering data and analyzing and presenting summative data in meaningful and accurate ways.
6. Communicate scientific principles and information underlying biology-related topics in written and oral formats using appropriate conventions for scientific attribution.
7. Work and learn independently and collaboratively while exercising personal, professional and social responsibility that recognizes the importance of practicing science sustainability, ethically and safely.

Assessment

- Practical’s, assignments and group activities/presentations – 40%
- Weekly quizzes – 10%
- Theory examination – 50%
MCD4490 – Advanced Mathematics

Purpose

This unit develops knowledge and skills in Mathematical logic, complex numbers and vectors. It provides an extension into circular functions and differential calculus including anti-derivatives and differential equations, investigates applications particularly for use in other engineering subjects, such as kinematics. This unit aims to cover the core of the Mathematical knowledge and essential skills that form the foundation of engineering studies.

Prerequisites

MCD1750 (Intermediate Mathematics) or Mathematical Methods units 3 & 4 equivalent.

Objectives

On completion of this unit, students should be able to:

1. Sketch and transform circular functions and their inverse functions.
2. Simplify circular function expressions and solve trigonometric equations.
3. Use techniques of mathematical proof in algebra geometry and calculus.
4. Apply the combinations of sine and cosine functions, converting \(a \cos x + b \sin x\) to a single sine \(A \sin (x + \alpha)\).
5. Understand the concept of complex numbers and construct the Argand Diagram.
6. Perform operations with complex numbers in Cartesian, polar and exponential form, understand the Euler’s formula.
7. Apply De Moivre’s theorem for computation powers and roots of complex numbers.
8. Find loci and subsets of the complex plane.
9. Apply implicit and logarithmic differentiation in various contexts.
10. Perform anti differentiation calculations using inverse trigonometric functions, integration by substitution, integration by parts, and integration by partial fractions.
11. Use definite integration to find volumes of revolution, center of mass, mean value and root mean square.
12. Perform computation with vector calculus, such as displacement, velocity and acceleration.
13. Understand the concept of exponential growth, differential equation and initial value problem.
15. Use vector calculus in dynamics.

Assessment

- Assignment – 5%
- Test – 10%
- Project – 5%
- Lecture quiz and attendance – 5%
- Tutorial participation – 5%
- Examination – 70%
Unit Guide

Diploma of Science (Education)

MCD4500 – Engineering Mathematics

Purpose

This unit allows students to explore fundamental concepts and techniques required for first year Engineering.

Prerequisites

MCD4490 (Advanced Mathematics)

Objectives

On completion of this unit, students should be able to:

1. Evaluate cross products of vectors and use vectors to represent lines and planes.
2. Perform matrix algebra.
3. Solve up to 3x3 systems of linear equations and find eigenvalues and eigenvectors.
4. Use hyperbolic functions.
5. Evaluate improper integrals of elementary functions and use integration by parts.
6. Appreciate convergence of numeric and power series, construct Taylor series and estimate errors in numerical approximations.
7. Solve first order ordinary differential equations, including by separable variables and integrating factors.
8. Solve second order linear differential equations with constant coefficients.
10. Evaluate and invert Laplace transforms and use them to solve ordinary differential equations.
11. Calculate partial derivatives, use the gradient vector to find directional derivatives and find extreme values of two-variables functions.
12. Express and explain mathematical techniques and arguments clearly in words.

Assessment

- Assignment 1 – 5%
- Test – 10%
- Assignment 2 – 5%
- Lecture quiz and attendance – 5%
- Tutorial participation – 5%
- Examination – 70%
MCD4700 – Introduction to Computer Systems, Networks and Security

Purpose

The unit introduces students to fundamentals of computer systems, networks and security. It provides basic knowledge of computer organisation and architecture, operating systems, networking architecture, technology and operation. It introduces the concepts of security goals for protecting common modern computer systems and communication networks from adversaries and the deployment of suitable countermeasures to achieve these goals.

Prerequisites

Nil

Learning Outcomes

On completion of this unit, students should be able to:

1. Analyse simple logic circuits.
2. Explain and analyse key computer structure and its operations.
3. Analyse and evaluate various strategies used by an operating system in managing the system resources and running applications efficiently.
4. Describe the operation of communication and networking models and develop simple solutions to network problems.
5. Critically assess the security threats and risks to an organisation’s information assets and propose suitable security control technologies that can be applied to reduce the security risks or in making procurement decisions.

Assessment

- Practical Class Work – 5%
- Assignment 1 – 17.5%
- Assignment 2 – 17.5%
- Final Exam – 60%
Purpose
This unit will improve students' understanding of themselves and others, improve critical thinking skills, and as a result enhance any career. Psychology is a broad discipline with many sub-field. This unit will also provide students with an introduction to six of sub-field which include:

- The history and science of psychology
- Personality
- The psychology of learning
- Biological psychology
- Developmental psychology
- Sensation and perception

Prerequisites
Nil

Objectives
On completion of this unit, students should be able to:

1. Identify historical and philosophical factors which have helped shape the modern discipline of psychology.
2. Identify key terms, concepts and theories related to: biological psychology, sensation and perception, developmental psychology, personality and learning.
3. Demonstrate an understanding of point 1 and 2 in various assessments.
4. Appreciate the need for an objective understanding of human behavior.
5. Develop skills in scientific/technical writing.
6. Develop skills in critical thinking and experimentation.

Assessment

- Weekly online quizzes – 15%
- Written summary – 10%
- Poster presentation – 10%
- Literature review (Critical Thinking exercise) – 15%
- Final exam – 50%
Purpose

This unit introduces students to the following area:

- Abnormal psychology: a study of abnormal thoughts, feelings and behaviors. Particularly you will examine the influences of distress and how this impact on one's ability to function in everyday life, e.g: depression, anxiety, schizophrenia.
- Cognitive psychology: a study of internal mental processes that includes memory and thinking.
- Social psychology: a study of how people think, feel and behave in the context of society.

Students will also undertake study in Research Methodology (RDA). RDA is an investigation of finding solutions to scientific and social problems through objective and systematic analysis.

Prerequisites

MCD6080 (Psychology 1A)

Objectives

On completion of this unit, students should be able to:

1. Identify and appreciate key influences on social behavior.
2. Identify types and components of memory and appreciate the limitation of memory.
3. Recognize and distinguish between the basic features, causes and treatment of schizophrenia, mood and anxiety disorders.
4. Apply and communicate (both orally and in written form) research methods principles to evaluate data, past research studies and to plan future research.
5. Demonstrate (through written and oral communication) skills in critical thinking.

Assessment

- Weekly online quizzes - 15%
- Research proposal plan (Part A) – 10%
- Research proposal (Part B) – 25%
- Examination (Hurdle requirement) – 50%
MCD8010 – Understanding Learning and Learners

Purpose
The aim for this unit is for students to learn about contemporary learning theories that enable students to reflect on their own learning experiences in order to understand how others learn. From the perspective of broader educational settings (school, community, early childhood setting, home) the important question of what learning is: how and why learning occurs, what quality learning might be and what influences learning, are discussed and reflected upon.

Through examination of different theoretical perspectives and contexts, this unit focuses on building an understanding of what can influence learning and offers skill building in academic learning. Ideas closely associated with learning, including motivation, engagement and ability are also considered. The unit encourages the students to begin constructing deep knowledge about the relationship between learning and educational inquiry.

Prerequisites
Nil

Objectives
On completion of this unit, students should be able to:

1. Understand a range of theories of learning; ability and engagement; and their continuing impacts on education.
2. Reflect on themselves as learners and their own diverse experiences of learning and apply this understanding to other contexts.
3. Develop an awareness of the impact that diverse individual, social and cultural contextual factors have on learning experiences.
4. Begin to understand the role of educational inquiry in exploring aspects of learning in a range of settings including academic setting.

Assessment

- Assessment 1 – 40%
- Assessment 2 – 60%

Requirement to pass this unit
Students are required to pass:

- Assessment 1 and 2
- MCD8030 (Primary Professional Experience Placement 1A)

In order to achieve a pass in this unit, students must attempt all assignments and achieve 50% or higher in overall mark.
MCD8020 – Understanding Teaching for Learning

Purpose

This unit builds on the focus on learning and educational inquiry skills in MCD8010 Understanding Learning and Learners. It introduces contemporary approaches to teaching and ways to investigate such approaches. It encourages students to explore and examine teaching relationships including modes of communication, teaching models and strategies, as well as the management or organization of learning situations. From the perspective of broader educational settings (school, community, early childhood settings, home) learning and assessment tasks require students to analyse and reflect on teaching and learning processes within diverse educational contexts and consider the implications of the Australian curriculum on effective teaching and learning.

Prerequisite

MCD8010 (Understanding Learning and Learners)

Objectives

On completion of this unit, students should be able to:

1. develop an understanding of contemporary approaches to teaching and their impact on learning
2. reflect on the role of communication, teaching strategies, the management and organization of learning situations in promoting positive learning as well as teaching relationships
3. develop an awareness of the impact that diverse individual, social and cultural contextual factors have on teaching and learning
4. begin to understand the role of the teacher in exploring aspects of teaching and learning in a range of settings.

Assessment

- Assessment 1 – 40%
- Assessment 2 – 60%

Requirement to pass this unit

Students are required to pass:

- Assessment 1 and 2
- MCD8050 (Primary Professional Experience Placement 1B)
MCD8030 – Primary Professional Experience 1A

Description

This unit assesses the students’ primary professional experience in the first trimester. Students complete the required number of days and the activities specified in the unit guide. Students’ learning is supported by relevant academic staff in Monash College, and by teacher mentors in the education setting in which they are placed.

Prerequisites

Nil

Learning Outcomes

On completion of this unit, students should be able to:

1. Complete the required number of days of professional experience and the activities specified in the unit guide.
2. Document their professional learning through means such as a professional experience folder which records lesson planning, self-reflections and an evaluation on developing practice.
3. Achieve a satisfactory level of progress in their development as teachers in line with the requirements outlined in the unit guide and the placement report.

Requirements

Pre-service teachers are required to undertake 5 days in each trimester.

<table>
<thead>
<tr>
<th>Year</th>
<th>Trimester</th>
<th>Unit</th>
<th>Placement</th>
<th>Number of days</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T1 2018</td>
<td>MCD8030</td>
<td>Primary School setting</td>
<td>5 days over one week</td>
<td>TBC</td>
</tr>
</tbody>
</table>

Pre-service students must satisfactorily complete the number of days set out in the placement time table (see table above).

Assessments and Submission Requirements

Professional Experience Report and Attendance Diary need to be uploaded to Moodle in a timely manner.
MCD8050 – Primary Professional Experience 1B

Description
This unit assesses the students’ primary professional experience in the second trimester. Students complete the required number of days and the activities specified in the unit guide. Students' learning is supported by relevant academic staff in Monash College, and by teacher mentors in the education setting in which they are placed.

Prerequisites
MCD8010 – Understanding Learning and Learners
MCD8030 – Primary Professional Experience 1A

Learning Outcomes
On completion of this unit, students should be able to:
1. Complete the required number of days of professional experience and the activities specified in the unit guide
2. Document their professional learning through means such as a professional experience folder which records lesson planning, self-reflections and an evaluation on developing practice
3. Achieve a satisfactory level of progress in their development as teachers in line with the requirements outlined in the unit guide and the placement report.

Requirements
Pre-service teachers are required to undertake 5 days in each trimester.

<table>
<thead>
<tr>
<th>Year</th>
<th>Trimester</th>
<th>Unit</th>
<th>Placement</th>
<th>Number of days</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T2 2018</td>
<td>MCD8050</td>
<td>Primary School setting</td>
<td>5 days over one week</td>
<td>TBC</td>
</tr>
</tbody>
</table>

Pre-service students must satisfactorily complete the number of days set out in the placement time table (see table above).

Assessments and Submission Requirements
Professional Experience Report and Attendance Diary need to be uploaded to Moodle in a timely manner.