Unit Guide

Diploma of Engineering

Monash College
Table of Contents

Overview... 3

MCD1160 – Introductory Engineering Computing.. 4

MCD1170 – Introductory Chemistry ... 5

MCD1180 – Introductory Physics... 6

MCD1190 – Chemistry A.. 7

MCD1200 – Physics A.. 8

MCD1470 – Engineering Practice.. 9

MCD1700 – Introductory Mathematics .. 10

MCD1750 – Intermediate Mathematics ... 12

MCD4140 – Computing for Engineering... 13

MCD4160 – Physics for Engineering.. 14

MCD4270 – Engineering Design: Lighter, Faster, Stronger.. 15

MCD4280 – Engineering Design: Cleaner, Safer, Smarter .. 17

MCD4290 – Engineering Mobile Apps.. 19

MCD4390 – Chemistry I... 20

MCD4490 – Advanced Mathematics ... 21

MCD4500 – Engineering Mathematics.. 22

MCD4510 – Preparatory Mathematics (P-Math) ... 23
Overview

<table>
<thead>
<tr>
<th>Unit Code</th>
<th>Unit Name</th>
<th>Unit EFTSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCD1160</td>
<td>Introductory Engineering Computing</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD1170</td>
<td>Introductory Chemistry</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD1180</td>
<td>Introductory Physics</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD1190</td>
<td>Chemistry A</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD1200</td>
<td>Physics A</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD1470</td>
<td>Engineering Practice</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD1700</td>
<td>Introductory Mathematics</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD1750</td>
<td>Intermediate Mathematics</td>
<td>0.125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit Code</th>
<th>Unit Name</th>
<th>Unit EFTSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCD4140</td>
<td>Computing for Engineering</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD4390</td>
<td>Chemistry I</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD4160</td>
<td>Physics for Engineering</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD4490</td>
<td>Advanced Mathematics</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD4500</td>
<td>Engineering Mathematics</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD4510</td>
<td>P-Math</td>
<td>-</td>
</tr>
<tr>
<td>MCD4270</td>
<td>Engineering design: lighter, faster, stronger</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD4280</td>
<td>Engineering design: cleaner, safer, smarter</td>
<td>0.125</td>
</tr>
<tr>
<td>MCD4290</td>
<td>Engineering mobile apps</td>
<td>0.125</td>
</tr>
</tbody>
</table>
MCD1160 – Introductory Engineering Computing

Description

Today’s engineers rely heavily on the use of computers. To solve problems of practical significance, you need to apply scientific and technical knowledge, common sense, and experience. This unit will provide grounding in the basic functioning of a computer system and how it is used within the engineering environment. Your knowledge of the following will be extended: advanced Microsoft Word features, Excel, and PowerPoint. Further, you’ll learn how to solve real-world problems via the utilisation of a microcontroller and programming language, and you’ll create and execute an effective oral presentation to share your findings.

This is a core unit in the Monash College Diploma of Engineering, Part 1.

Prerequisites

Nil

Learning Outcomes

On completion of this unit, students should be able to:

1. Use the formatting features of a word processor.
2. Use utilities and advanced features provided with a word processor.
3. Create and format a spreadsheet.
4. Use functions and formulas to perform calculations in a spreadsheet.
5. Use graphics in a spreadsheet.
6. Use advanced facilities of a spreadsheet.
7. Designing slide shows, animation of a slide, slide transitions, use of templates & the auto content wizard.
8. Communicate technical content in effective oral presentations.
10. Decompose problems into simpler problems.
11. Construct and test simple computer programs.
12. Analyse and debug existing programs.
13. Recognise the importance of good practices in programming.
14. Understand how real-word problems can be addressed by the digital-word.

Assessments

- Test 1 - 10%
- Test 2 - 10%
- Assignment 1 - 20%
- Presentation 1 - 5%
- Assignment 2 - 30%
- Presentation 2 - 5%
- Lab Participation - 10%
- Weekly Quizzes - 10%
- No Final Examination

Students must achieve an overall mark of 50% or higher in order to pass this unit.
MCD1170 – Introductory Chemistry

Description
Chemistry is the science of matter and the transformations it can undergo. It plays a central role in medicine, engineering and many sciences. It helps us understand our surroundings and the way we function. Students will investigate the various analytical techniques that are used to analyse substances depending on their properties. The knowledge and skills gained in this unit will be further extended in MCD1190: Chemistry A.

This is a core unit in the Monash College Diploma of Engineering, Part 1.

Prerequisites
Students should have completed an equivalent to Victorian VCE Year 11 Chemistry, Units 1 & 2.

Learning Outcomes
On completion of this unit, students should be able to:

1. Express chemical reactions symbolically, qualitatively and quantitatively.
2. Write rate laws and explain how the position of equilibrium can be altered, including examples from industry.
3. Explain the structure and naming of simple organic molecules.
4. Explain the concepts of bonding between atoms and relate this to the properties of compounds.

Assessments

- Test 1 - 5%
- Test 2 - 10%
- Quizzes (1 – 10) - 10%
- Poster / Presentation - 6%
- Laboratory – 9%
- Final examination – 60%

Students must achieve an overall mark of 50% or higher with a minimum mark of 40% in the final examination in order to pass this unit. Overall mark consists of internal assessments and final examination marks.
MCD1180 – Introductory Physics

Description
Through the study of physics, we are able to gain a greater understanding of the nature of the universe. Physics strives to reveal nature’s underlying simplicity and establish the rules which cause galaxies to form, the toast to burn, or what holds the component parts of a proton together. Physics underlies all of the life and physical sciences, as well as engineering and technology. You will be engaged in practical work to allow you to explore and measure key theories.

This is a core unit in the Monash College Diploma of Engineering, Part 1.

Prerequisites
Nil

Learning Outcomes
On completion of this unit, students should be able to:
1. Describe the difference between qualitative and quantitative techniques; record accurate observations.
2. Select measuring equipment of appropriate accuracy.
3. Utilise appropriate numbers of significant figures.
4. Recognise the measurement error in selected equipment; identify sources of error in analytical procedures.
5. Distinguish between displacement, speed, velocity and acceleration.
6. Distinguish between scalar and vector quantities.
7. Apply the laws of motion to practical situations.
8. Demonstrate knowledge of mass, force and their relationship through Newton’s laws.
9. Differentiate between work, energy, kinetic energy, potential energy and power.
10. Differentiate between force and torque and apply the laws of equilibrium to practical situations.
11. Distinguish between displacement, amplitude, period, frequency and wavelength of a wave.
12. Describe behavior of waves in terms of reflection, refraction, diffraction and interference.
13. Distinguish between energy, intensity and intensity level in a wave.

Assessments
- Test 1 - 4%
- Quizzes - 6%
- Test 2 - 8%
- Laboratory - 22%
- Final Exam - 60%

Students must achieve an overall mark of 50% or higher with a minimum mark of 40% in the final examination in order to pass this unit. Overall mark consists of internal assessments and final examination marks.
MCD1190 – Chemistry A

Description
Chemistry is an important branch of science in which has a direct impact upon our lives. For example, knowledge of chemical concepts will assist us to explore new and cheaper energy sources, improve health and safety standards, and develop ‘greener’ and environmentally friendly processes, which reduce pollution and wastage in the environment. You will investigate, explore and discuss chemical concepts and issues, and solve quantitative and qualitative problems in class.
This is a core unit in the Monash College Diploma of Engineering, Part 1.

Prerequisites
MCD1170 Introductory Chemistry or VCE Year 11 Chemistry, Unit 3.

Learning Outcomes
On completion of this unit, students should be able to:
1. Demonstrate the importance of energy transformations in thermochemical and electrochemical reactions.
2. Relate organic chemical structures to observed chemical reactions, using examples from those involved in human nutrition and global cycling of nutrients.
3. Analyse the arrangement of elements in the periodic table (including its historical development) and relate trends in properties of elements to their atomic structure.

Assessments
- Test 1 - 7%
- Test 2 - 8%
- Quizzes - 10%
- Poster - 6%
- Laboratory – 9%
- Final Examination - 60%

Students must achieve an overall mark of 50% or higher with a minimum mark of 45% in the final examination in order to pass this unit. Overall mark consists of internal assessments and final examination marks.
MCD1200 – Physics A

Description
This unit continues on from MCD1180: Introductory Physics, and considers the basic concepts of practical investigation, rotational motion, electricity, magnetism and atomic theories. Through practical work, you will relate your theoretical knowledge to experimental processes and engage in critical observation and testing of physical phenomena.

This is a core unit in the Monash College Diploma of Engineering, Part 1.

Prerequisites
MCD1180 Introductory Physics.

Learning Outcomes
On completion of this unit, students should be able to:
1. Demonstrate knowledge of the value of practical work.
2. Apply the theory of rotational motion.
3. Solve problems involving electricity and magnetism.
4. Explain a range of atomic theories.

Assessments
- Test 1 - 4%
- Quizzes (1-6) - 6%
- Test 2 - 8%
- Laboratory - 22%
- Final Exam - 60%

Students must achieve an overall mark of 50% or higher with a minimum mark of 45% in the final examination in order to pass this unit. Overall mark consists of internal assessments and final examination marks.
MCD1470 – Engineering Practice

Description
The practice of engineering involves applying scientific and technical knowledge, common sense and experience to solving problems of practical significance for people. During this unit, you will learn about engineering practices by studying important engineering skills that are not covered in traditional mathematics, chemistry and physics courses, and will apply these skills to projects. Through the study of this unit, you will improve your knowledge of the IT and engineering professions, design and analysis, communication, ethics and economics.

This is a core unit in the Monash College Diplomas of Engineering and IT, Part 1.

Prerequisites
Nil

Learning Outcomes
On completion of this unit, students should be able to:

1. Gain a foundation of engineering principles and integrate these principles with chemistry, physics, mathematics, economics and design principles.

2. Develop conceptual understanding and problem-solving abilities by applying engineering principles.

3. Develop proficiency with technologies for analysis, simulation, theoretical prediction, access to information, and report preparation.

4. Describe the importance and relevance of engineering and its interdisciplinary ties to other fields and society, in order to become a scientifically literate and ethical citizen.

5. Demonstrate proper and ethical scientific and engineering practices, including safety, environment, and record keeping.

6. Interpret scientific and engineering results and draw reasonable conclusions.

7. Communicate effectively through written and oral reports.

Assessments
- Assignment 1 - 10%
- Assignment 2 (Test 1) - 10%
- Assignment 3 - 10%
- Assignment 4 (Test 2) - 10%
- Assignment 5 (Test 3) - 10%
- Final Design Project - 50%

Students must achieve an overall mark of 50% or higher in order to pass this unit.
MCD1700 – Introductory Mathematics

Description
This is a core unit in the Monash College Diploma Part 1 of Engineering, Information Technology and Science. The unit will provide students with the pre-requisite knowledge and skills to progress to the higher levels of mathematics in the Engineering IT and Science diploma; subsequently in the relevant degree programs.

Prerequisites
Nil

Learning Outcomes
On completion of this unit, students should be able to:
1. Identify number sets in complex domain.
2. Use set notations to describe numbers.
3. Use interval notations to represent number sets.
4. Use real number line to express the number sets.
5. Use Venn diagram to represent number sets.
6. Solve linear and simultaneous linear equations using graphical and algebraic methods.
7. Use simultaneous linear equations to model and solve real world problems.
8. Recognise prime, rational, irrational and complex numbers.
9. Apply factor theorem to factorise polynomial functions.
10. Solve polynomial equations.
11. Solve quadratic equations using factorizing, quadratic formula or completing the square method.
12. Sketch graphs of quadratic functions.
13. Apply binomial expansion to solve problem in various algebraic contexts.
15. Plot complex numbers in the Argand diagram.
16. Find the rule for inverse function for given functions and sketch the graph of inverse functions.
17. Solve system of equations and literal equations.
18. Use exponential and logarithmic functions to model application problems.
19. Sketch graphs of exponential and logarithmic functions.
20. Solve exponential and logarithmic equations.
21. Convert radians in to degrees and vice versa.
22. Apply trigonometric ratios of $0^\circ, 30^\circ, 45^\circ, 60^\circ, 90^\circ$ to solve problem in various geometric and analytical geometric contexts.
23. Apply sine and cosine rule solve to solve problem in various geometric and analytical geometric contexts.
24. Sketch the graphs of trigonometric functions of sin, cos, tan, sec, cosec and cot.
25. Identify amplitude, period and mid line of \(a \sin(bx + c) + d \) and \(a \cos(bx + c) + d \).
27. Apply vector algebra to solve problems in geometry.
28. Express vectors using \(\hat{i} \) and \(\hat{j} \) components. In \(\mathbb{R}^2 \).
29. Express Cartesian coordinates in \(\mathbb{R}^2 \).
30. Calculated distance between two points in \(\mathbb{R}^2 \).
31. Use the formula \(\left(\frac{nx_1 + mx_2}{n + m}, \frac{ny_1 + my_2}{n + m} \right) \) to divide a line segment by given ratio.
32. solve problems related in Parallel and perpendicular lines in \(\mathbb{R}^2 \).
33. Recognise angles relating in parallel lines triangles and polygons.
34. Identify congruent and similar triangles.
35. Apply properties of congruent and similar triangles to solve problems in plane geometry and analytical geometry.
36. Recognise rectangle, rhombus, parallelogram and square from complex geometrical diagrams. Apply properties of rectangle, rhombus, parallelogram and square to solve problems in plane geometry and analytical geometry.

Assessments

- Topic Quizzes - 10%
- Test - 15%
- Assignment - 10%
- Tutorial participation - 5%
- Final Examination - 60%

In order to pass this unit, students must:

- Achieve at least 65% in the tutorial participation
- Achieve at least 40% in the total internal assessments
- Achieve at least 40% in the final examination
- Achieve an overall mark of 50% or higher
MCD1750 – Intermediate Mathematics

Description
This is a core unit in the Monash College Diploma Part 1 of Engineering, Information Technology and Science. The unit will provide students with the pre-requisite knowledge and skills to progress to the higher levels of mathematics in the Engineering IT and Science diploma; subsequently in the relevant degree programs.

Prerequisites
MCD1700 (Introductory Mathematics)

Learning Outcomes
On completion of this unit, students should be able to:

1. Apply the concept of vectors in Cartesian form in analytical geometry.
2. Find and apply position vector, magnitude of vector, unit vector, angles between vectors and direction cosines in two and three-dimensional problems.
3. Describe linear dependency and independency in vectors.
4. Find scalar and vector resolute, scalar product of vectors, application of scalar product.
5. Use Pythagorean identities \(\sin^2 \theta + \cos^2 \theta = 1; \tan^2 \theta + 1 = \sec^2 \theta; 1 + \cot^2 \theta = \csc^2 \theta\) in problem solving.
6. Apply compound-angle identities in various geometric and analytical geometric applications.
7. Find general solutions of simple and complicated trigonometric equations.
8. Apply limits, continuity and differentiation to solve mathematical problems.
9. Identify and analyse the nature of critical point using derivative tests.
10. Apply the differentiation to solve the problems in various context of engineering and other disciplines.
11. Extend the concept of derivatives by inverse circular functions.

Assessments
- Topic Quizzes - 10%
- Test - 15%
- Oral Presentation - 10%
- Tutorial participation - 5%
- Final examination - 60%

Students must achieve at least 40% in the internal assessments, 45% in the final examination and an overall mark of 50% in order to pass this unit.
MCD4140 – Computing for Engineering

Description
This unit introduces software development and design using MATLAB, including data types and variables, structured programming, M-files and functions, numerical errors and uncertainty and the programming of numerical techniques. Numerical techniques covered include root finding, interpolation, linear and non-linear regression, numerical integration and ordinary differential equations.

Prerequisites
Nil

Co-requisites
MCD4500 Engineering Mathematics

Learning Outcomes
On completion of this unit, students should be able to:

1. Develop an understanding of commonly used numerical methods for solving engineering problems; the ability to appropriately apply numerical methods to engineering problems and to know some of the limitations of such methods.

2. Develop structured problem solving techniques and to develop a knowledge of programming concepts and the ability to write simple programs.

Assessments
- Lecture Quizzes and Computer Labs - 30%
- Assignment - 10%
- Final Examination - 60%

In order to pass this unit, students must:
- Attempt all internal assessments
- Achieve at least 45% in the total internal assessments
- Achieve at least 45% in the final examination
- Achieve an overall mark of 50% or higher
MCD4160 – Physics for Engineering

Description
Through the study of this unit, you will explore engineering concepts such as energy, momentum and angular momentum with applications to planetary orbits, rocket propulsion, precession and fly wheels. Applications of oscillations and waves within engineering applications will also be explored. Students will consider: resonance, transmission of energy, Doppler effect and speed measurement, polarisation and stress models, diffraction and non-structures, thin film interference and anti-reflecting films together with Quantum Physics, Uncertainty Principle, wave functions, atomic force microscope, lasers and stimulated emission. The practical component develops measurement, analysis, and communication skills.

This is an optional unit in the Monash College Diploma of Engineering, Part 2.

Prerequisites
MCD1200 Physics A (For Part 2 entry students, Part 1 pre-requisites are not applicable).

Learning Outcomes
On completion of this unit, students should be able to:

1. Apply energy and momentum methods to analyse motion of systems.
2. Explain behaviours involving oscillations and waves and do appropriate analysis and calculations.
3. Explain, and apply basic quantum principles to, situations which are relevant in engineering and technology contexts; do appropriate analysis and calculations.
4. Demonstrate an ability to describe and explain advanced techniques used in relevant engineering or physics contexts.
5. Make reliable measurements, estimate uncertainties, analyse, evaluate and interpret data in cases appropriate to engineering and related to the theory studied.
6. Show an improved ability to work in teams and to communicate and discuss physics concepts, measurements and applications related to engineering and developments in technologies.
7. Approach new problems and find solutions on the basis of general principles, and evaluate the appropriateness of their proposed models or solutions.

Assessments
- Quizzes / Assignment - 10%
- Test 1 (Mechanics) - 14%
- Test 2 (Oscillation and Waves) - 14%
- Laboratory Work - 22%
- Final Examination - 40%

In order to pass this unit, students must:
- Achieve at least 45% in the total internal assessments
- Achieve at least 45% in the final examination
- Achieve an overall mark of 50% or higher
MCD4270 – Engineering Design: Lighter, Faster, Stronger

Description
This unit develops a process for the analysis and design of static and dynamic structures and mechanisms using engineered materials. Through a multidisciplinary approach, the fundamentals of mechanical, civil and material engineering will be explained and the basic concepts of loads and motions are introduced.

Team based projects will highlight the multidisciplinary nature of modern engineering. These concepts will be practised through hands-on projects carried out by teams. Communication and teamwork skills will be developed through teamwork tasks.

This is core unit in the Monash College Diploma of Engineering, Part 2.

Prerequisites
Nil

Learning Outcomes
On completion of this unit, students should be able to:

1. Describe, with examples, the multi-disciplinary nature of modern engineering problems.
2. Describe, with examples, the role of engineers in the design of structures and mechanisms in modern society.
3. Identify different structural forms (including beams and trusses) and translate physical structures into appropriate models for analysis and design.
4. Apply fundamental concepts of kinematics and kinetics to analyse motion of particles and rigid bodies.
5. Apply energy methods to analyse the motion of particles and rigid bodies.
6. Describe the key properties of structural materials for specific applications.
7. Define, measure and summarize the importance of the microstructure of materials and analyse the microstructure-property relationship.
8. Explain how different material processing routes directly influence material structural properties.
9. Develop and apply problem-solving techniques that demonstrate knowledge and application of the technical content considered in the unit.
10. Recognize and apply systematic principles of engineering design.
11. Complete tasks as part of a team and communicate effectively with team members prepare and present oral and written reports in a professional engineering format.
Assessments

- A1: Lecture Quizzes / Work Sheets - 5%
- A2: Test 1 - 10%
- A3: Project 1: Spaghetti Bridge - 12%
- A4: Materials Assignment - 6%
- A5: Project 2: Trebuchet - 12%
- A6: Test 2 - 15%
- A7: Examination - 40%

In order to pass this unit, students must:
- Achieve at least 45% in the total internal assessments
- Achieve at least 45% in the final examination
- Achieve an overall mark of 50% or higher
MCD4280 – Engineering Design: Cleaner, Safer, Smarter

Description
Fundamentals of electrical, chemical and materials engineering will be introduced and applied to provide technological solutions for real-world problems. Theory underpinning analogue and digital circuit design; energy and mass balance; materials processing and the role of functional materials will be presented. The contribution of each topic to a contemporary engineering application will be demonstrated.

Team based projects will highlight the multidisciplinary nature of modern engineering. These concepts will be practiced through hands-on projects carried out by teams. Communication and teamwork skills will be developed through teamwork tasks.

Prerequisites
Nil

Learning Outcomes
On completion of this unit, students should be able to:

1. Describe, with examples, the multi-disciplinary nature of modern engineering problems.
2. Employ standard electrical laboratory equipment to measure electrical quantities used to debug circuits.
3. Apply fundamental concepts of resistance, current, voltage and Kirchhoff’s Laws to analyze simple circuits.
4. Employ fundamental theories of electrical engineering to build analogue and digital circuits.
5. Analyse steady state systems with and without chemical reaction through the application of mass balance concepts.
6. Analyse thermodynamic processes through the application of energy balance concepts.
7. Describe the key properties of functional materials for specified applications.
8. Define, measure and summarize the importance of key properties of functional materials on their intended application and explain the structure-property relationship.
9. Explain how different material processing routes directly influence material structural properties.
10. Develop and apply problem-solving techniques that demonstrate knowledge and application of the technical content considered in the unit.
11. Recognize and apply systematic principles of engineering design.
12. Complete tasks as part of a team and communicate effectively with team members.
13. Prepare and present oral and written reports in a professional engineering format.
Assessments

- Pre-Lecture Online Quizzes – 9%
- Practice Class Participation – 13%
- Project 1 Demonstration – 15%
- Project 1 Written Report – 5%
- Project 2 Written Report – 10%
- Worksheet Booklets – 3%
- Lecture Participation – 5%
- Examination – 40%

In order to pass this unit, students must:

- Achieve at least 45% in the total internal assessments
- Achieve at least 45% in the final examination
- Achieve an overall mark of 50% or higher
MCD4290 – Engineering Mobile Apps

Description
This unit introduces students to the use of Information Technology (IT) in modern engineering practice. Students will learn an object-oriented approach to both computer systems and software engineering for solving engineering problems. Students will work in small teams to develop a mobile application that meets a contemporary need in engineering. The fundamental stages in the software development lifecycle will be introduced, including requirements analysis, design, implementing and verification. Students will use IT tools to support the engineering process.

This is a core unit in the Monash College Diploma of Engineering, Part 2.

Prerequisites
Nil

Learning Outcomes
On completion of this unit, students should be able to:

1. Describe the capabilities and limitations of mobile computing devices, as well as the interaction between developments in IT and their use in modern Engineering practice.
2. Construct mobile applications that utilise device capabilities to solve engineering problems using a simple object-oriented software approach.
3. Employ IT tools for aspects of the software engineering process, including a code editor, debugger, shared code repository and version control system, task-tracking and team communication tools.
4. Prepare written technical documentation in a standard design formalism from a template.
5. Complete tasks as part of a team, and communicate effectively with team members.
6. Prepare and deliver oral presentations in a professional engineering format.

Assessments
- Assignment 1 - 9%
- Presentation 1 – 3%
- Assignment 2 - 18%
- Presentation 2 – 6%
- Practical Class Work – 6%
- Tutorial Class Work – 6%
- Pre-reading / Workshop Quizzes – 12%
- Final Examination - 40%

In order to pass this unit, students must:
- Achieve at least 45% in the total internal assessments
- Achieve at least 45% in the final examination
- Achieve an overall mark of 50% or higher
MCD4390 – Chemistry I

Description

This unit has been designed to provide a fundamental understanding, as well as the ability to gain knowledge in different aspects of chemistry including physical chemistry principles theoretical and practical tasks that are relevant to the university level of learning.

This is a core unit in the Monash college Diploma of Engineering and Diploma of Science Part 2.

Prerequisites

MCD1190 (Chemistry A) or VCE year 12 Chemistry

Learning Outcomes

On completion of this unit, students should be able to:

1. Discuss the features of atomic structure and the construction of the periodic table of elements.
2. Interpret relationships between electronic structure and bonding.
3. Explore a wide range of molecular structures and investigate aspects of stereochemistry such as isomerism and chirality.
4. Distinguish between ideal gases and real gases.
5. Recognise factors which give rise to polarity and its relationship to intermolecular bonding.
6. Define the first and second laws of thermodynamics and apply enthalpy and entropy.
7. Discuss factors which give rise to chemical kinetics.
8. Apply acid-base chemistry in the understanding of dynamic equilibria.
9. Foster the acquisition of practical skills by exploiting an inquiry-based approach to the chemistry laboratory experience.

Assessments

- Tutorial participation - 3%
- Laboratory component - 30%
- Online assessments - 10%
- Lab Online Quiz - 1%
- In-Class Online Quiz - 1%
- Final examination - 55%

In order to pass this unit, students must:

- Achieve at least 15% out of 30% in the lab component
- Achieve at least 30% out of 55% in the final examination
- Achieve an overall mark of 50% or higher

MCD4490 – Advanced Mathematics

Description

Functions and coordinate geometry: types of functions, composite functions, inverse functions, modelling of periodic phenomena with trigonometric functions, complex numbers. Differentiation and integration: concepts and techniques, applications to related rate of change and optimization problems, areas, volume and centre of mass. Vectors in two and three-dimensional space, application to motion and kinematics.

Prerequisites

MCD1750 (Intermediate Mathematics) or Mathematical Methods units 3 & 4 equivalent.

Learning Outcomes

On completion of this unit, students should be able to:

1. Demonstrate understanding of the properties of common functions and their graphs, use composition of functions and inverse functions, use trigonometric functions to model periodic behaviour.
2. Represent complex numbers in Cartesian, polar and exponential forms and on the complex plane.
3. Perform arithmetic and algebra on complex numbers, including finding powers and complex roots of polynomials.
4. Demonstrate understanding of the concepts of limit, continuity, differentiable and integrable functions.
5. Evaluate limits of piecewise functions and of rational functions at infinity.
6. Apply differentiation techniques to related rates of change problems and optimization problems.
7. Use differentiation rules to find derivatives of implicit and explicit functions.
8. Use simple integration techniques to find definite and indefinite integrals, including by substitution and partial fractions.
9. Apply integration techniques to calculate areas, average values, volumes and centres of mass or moment.
10. Solve kinematics problems and set up and solve problems involving Newton’s laws of motion.
11. Express and explain mathematical techniques and arguments clearly in words.

Assessments

- Assignment 1 - 5%
- Test - 10%
- Oral Presentation - 5%
- Lecture quiz and attendance - 10%
- Tutorial participation - 10%
- Final Examination - 60%

In order to pass this unit, students must:

- Attempt all internal assessments and achieve at least 45% in the total internal assessments
- Achieve at least 45% in the final examination
- Achieve an overall mark of 50% or higher
MCD4500 – Engineering Mathematics

Description

This is a core unit in the Monash College Diploma of Engineering, Part 2.

Prerequisites
MCD4490 (Advanced Mathematics)

Learning Outcomes
On completion of this unit, students should be able to:
1. Evaluate cross products of vectors and use vectors to represent lines and planes.
2. Perform matrix algebra.
3. Solve up to 3x3 systems of linear equations and find eigenvalues and eigenvectors.
4. Use hyperbolic functions.
5. Evaluate improper integrals of elementary functions and use integration by parts.
6. Solve first order ordinary differential equations, including by separable variables and integrating factors.
7. Solve second order linear differential equations with constant coefficients.
8. Use differential equations to model simple engineering problems.
9. Evaluate and invert Laplace transforms and use them to solve ordinary differential equations.
10. Express and explain mathematical techniques and arguments clearly in words.

Assessments
- Assignment 1 - 5%
- Test - 10%
- Assignment 2 - 5%
- Lecture quiz and attendance - 10%
- Tutorial participation - 10%
- Examination - 60%

In order to pass this unit, students must:
- Attempt all internal assessments and achieve at least 45% in the total internal assessments
- Achieve at least 45% in the final examination
- Achieve an overall mark of 50% or higher
MCD4510 – Preparatory Mathematics (P-Math)

Description
This is a compulsory unit for students directly entering the Monash College Diploma of Engineering, Part 2 without having previously completed the Diploma of Engineering, Part 1. For these students, the unit is the prerequisite to the compulsory unit MCD4490 Advanced Mathematics.

The unit builds upon knowledge acquired in VCE Mathematical Methods Units 3 & 4 (or equivalent) and VCE Specialist Mathematics Units 1 - 4 (or equivalent), with a focus on content for Bachelor of Engineering students.

This unit develops knowledge and skills in mathematical logic, functions and transformations, complex numbers, introductory calculus (differentiation and integration) and vectors.

Prerequisites
N/A

Learning Outcomes
On completion of this unit, students should be able to:

1. Recognise power, exponential, logarithmic and trigonometric functions (and trigonometric reciprocals) and be familiar with their properties, graphs, and applications.
2. Apply calculus-based techniques in the solution of problems including differentiation and integration of functions using a range of techniques; graphical analysis of functions; calculating tangents and normals to curves; finding areas; understanding constant, average and instantaneous rates of change; curve sketching, and applications of calculus.
3. Understand the concept of 2-dimensional vectors by applying basic vector operations and calculating the directional cosine of vectors.
4. Use problem-solving strategies such as: inductive and deductive reasoning and logical proof; partitioning problems into sub-problems; identifying and working on related or simplified problems; generalisation; justification of solution processes or assumptions; checking the validity and reasonableness of solutions.
5. Communicate arguments and strategies when solving problems by using appropriate mathematical language, conventions, and representations.
6. Use mathematical knowledge to solve problems set in ‘real world’ contexts and apply skills in both routine and non-routine situations.

Assessments

- Sets & Polynomials Online Test - 10%
- Group Presentation Task - 10%
- Exponential, Log & Circular Functions Test - 15%
- Calculus Test – 15%
- Participation - 10%
- Examination - 40%

Students must attempt all of the internal assessments and achieve an overall mark of 50% or higher.